Introduction

In today’s globalized world, businesses often need to manage and search through data in multiple languages. Elasticsearch, a powerful search and analytics engine, offers a robust solution for multi-language indexing. Combining this with the scalability and flexibility of AWS Cloud creates a strong infrastructure for managing multilingual data. In this blog post, we will explore how to implement multi-language indexing with Elasticsearch on AWS Cloud, covering predefined language analyzers, accessing AWS Cloud via SSH console, ES mapping configuration, and references.

Predefined Language Analyzers

Elasticsearch provides a variety of predefined language analyzers that are tailored for specific languages. These analyzers handle text normalization, stemming, and tokenization according to the rules of the target language, enhancing search accuracy and relevance.

Common Predefined Language Analyzers

  • English Analyzer: Includes stemming, lowercasing, and stop word filtering specific to English.
  • French Analyzer: Handles French-specific stemming, deletion, and lowercasing.
  • German Analyzer: Supports stemming and compound word tokenization specific to German.
  • Spanish Analyzer: Manages stemming, stop word filtering, and lowercasing for Spanish.

Example Configuration

To use these predefined analyzers, specify them in your Elasticsearch index settings. Here’s an example of how to set up an index with different language analyzers:

PUT /my_multilingual_index

{

  “settings”: {

    “analysis”: {

      “analyzer”: {

        “english_analyzer”: {

          “type”: “english”

        },

        “french_analyzer”: {

          “type”: “french”

        },

        “german_analyzer”: {

          “type”: “german”

        },

        “spanish_analyzer”: {

          “type”: “spanish”

        }

      }

    }

  },

  “mappings”: {

    “properties”: {

      “content”: {

        “type”: “text”,

        “fields”: {

          “english”: {

            “type”: “text”,

            “analyzer”: “english_analyzer”

          },

          “french”: {

            “type”: “text”,

            “analyzer”: “french_analyzer”

          },

          “german”: {

            “type”: “text”,

            “analyzer”: “german_analyzer”

          },

          “spanish”: {

            “type”: “text”,

            “analyzer”: “spanish_analyzer”

          }

        }

      }

    }

  }

}

Accessing AWS Cloud via SSH Console

To set up Elasticsearch on AWS, you must first access your AWS EC2 instances via SSH. Follow these steps to connect to your instances securely:

  1. Generate an SSH Key Pair: If you haven’t already, generate an SSH key pair using the ssh-keygen command on your local machine.

    ssh-keygen -t rsa -b 4096 -C “your_email@example.com”
  2. Launch an EC2 Instance: Go to the AWS Management Console, navigate to the EC2 Dashboard, and launch a new instance. Ensure you choose an appropriate AMI and instance type for your Elasticsearch setup.
  3. Connect to Your Instance: Use the following command to connect to your instance. Replace your-key-pair.pem with the path to your key pair file and ec2-user@your-instance-public-dns with your instance’s public DNS.

    ssh -i “your-key-pair.pem” ec2-user@your-instance-public-dns

ES Mapping: Configuration and References

Mapping in Elasticsearch defines how documents and their fields are stored and indexed. When dealing with multi-language indexing, it’s crucial to configure mappings that specify appropriate analyzers for each language.

Example Mapping Configuration

Here’s an example of how to configure mappings for a multi-language index:

PUT /my_multilingual_index/_mapping

{

  “properties”: {

    “title”: {

      “type”: “text”,

      “fields”: {

        “english”: {

          “type”: “text”,

          “analyzer”: “english_analyzer”

        },

        “french”: {

          “type”: “text”,

          “analyzer”: “french_analyzer”

        },

        “german”: {

          “type”: “text”,

          “analyzer”: “german_analyzer”

        },

        “spanish”: {

          “type”: “text”,

          “analyzer”: “spanish_analyzer”

        }

      }

    },

    “description”: {

      “type”: “text”,

      “fields”: {

        “english”: {

          “type”: “text”,

          “analyzer”: “english_analyzer”

        },

        “french”: {

          “type”: “text”,

          “analyzer”: “french_analyzer”

        },

        “german”: {

          “type”: “text”,

          “analyzer”: “german_analyzer”

        },

        “spanish”: {

          “type”: “text”,

          “analyzer”: “spanish_analyzer”

        }

      }

    }

  }

}

In this configuration, each text field is indexed with different analyzers based on the language.

Final Thoughts and Summary

Implementing multi-language indexing with Elasticsearch on AWS Cloud offers a scalable and efficient solution for managing multilingual data. You can significantly improve search relevance and performance across different languages by leveraging predefined language analyzers and configuring appropriate mappings. Accessing AWS instances via SSH ensures secure and efficient management of your Elasticsearch setup.

References

Searching data in Amazon OpenSearch Service

Elasticsearch on AWS Cloud: Building a Strong Search Solution